

The role of low-flow ECCO₂R in supporting LPV strategies

$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

The role of low-flow ECCO₂R in supporting LPV strategies

How may mechanical ventilation adversely affect patient outcomes?

How may LPV reduce risk of VILI?

How may ECCO₂R facilitate the use of LPV?

Abreviations: ALI, acute lung injury; ARDS, acute respiratory distress syndrome; CI, confidence interval; Crs, respiratory system compliance; $ECCO_2R$, extracorporeal carbon dioxide removal; FiO_2 , fraction of inspired oxygen; ICU, intensive care unit; LPV, lung protective ventilation; MV, mechanical ventilation; OR, odds ratio; $PaCO_{2^1}$ arterial carbon dioxide partial pressure; PaO_2 , arterial oxygen partial pressure; PBW, predicted body weight; PEEP, positive end-expiratory pressure; P_{plat} , plateau pressure; RR, relative risk; V_A/Q , alveolar ventilation to perfusion ratio; VILI, ventilator-induced lung injury; V_7 , tidal volume; VV-ECMO, veno-venous extracorporeal membrane oxygenation; ΔP , driving pressure.

How may mechanical ventilation adversely affect patient outcomes?

VILI is a potential complication of mechanical ventilation

- The goal of mechanical ventilation is to provide acceptable oxygenation and CO₂ removal while minimizing VILI¹
- Complications of mechanical ventilation include volutrauma, barotrauma, atelectrauma, and biotrauma^{2,3}

Complications of mechanical ventilation

Volutrauma (biophysical injury)

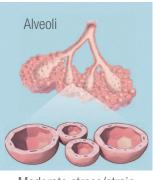
Over-distension of alveoli resulting from increased V_{τ}

Barotrauma (biophysical injury)

Alveolar rupture and air leaks resulting from high pressure

Atelectrauma (biophysical injury)

Damage caused by repetitive opening and closing of collapsed lung parts


Biotrauma (biochemical injury)

Release of biological mediators and translocation into the circulation

Mechanisms of VILI

Extreme stress/strain Volutrauma, barotrauma Rupture

Moderate stress/strain Atelectrauma Inflammatory mediators Full-blown inflammation

Biotrauma

Adapted from Gattinoni L, Protti A. CMAJ 2008;178:1174–6, with permission from Access Copyright.

- ARDS accounts for approximately 25% of patients requiring mechanical ventilation⁴
- As most patients with ARDS require invasive mechanical ventilation,¹ they are at risk of VILI

i)

ARDS

- An acute inflammatory lung injury that leads to increased pulmonary vascular permeability, increased lung weight and loss of aerated lung tissue, resulting in hypoxemia and bilateral radiographic opacities⁵
- A serious condition that is common but often under-recognized in the ICU,⁴ which may limit implementation of effective management
 - In the LUNG SAFE study, 35.8% of all cases were not recognized by physicians⁴
 - Less severe ARDS was more likely to be unrecognized (48.7% of mild cases vs 21.5% of severe cases)⁴

High incidence:4

- 1 in 10 of all ICU admissions*
- 1 in 4 of all patients requiring mechanical ventilation*

High mortality rate:4

- 40.0% hospital mortality*
- 35.3% ICU mortality*

Risk of multiple organ failure:

- 68.9–70.0% risk of failure of \geq 2 organs⁶
- 30.0-31.1% risk of failure of ≥ 3 organs⁶
- High rates of renal failure (41–49%) and liver failure (13–34%)^{7,8}

*As reported in LUNG SAFE; a large, international, prospective, cohort study (n = 2377).⁴

Evidence from animal studies suggests that VILI may contribute to the development of multiple organ failure

- A proposed mechanism for a relationship with multiple organ failure is based on the systemic release of inflammatory mediators resulting from VILI (biotrauma)^{3,9}
- Multiple organ failure has been associated with increased risk of mortality in patients with ALI or ARDS; in one study, multiple organ failure was the cause of death in 16.7% of patients with ARDS⁶

Key points

- Mechanical ventilation is the cornerstone of treatment for patients with impaired lung function¹
- However, VILI may complicate the management of mechanically ventilated patients,^{1,2} particularly those with ARDS
- Evidence from animal studies suggests that VILI can contribute to poor outcomes, including multiple organ failure^{3,9}

How may LPV reduce risk of VILI?

Lung protective ventilation strategies modify ventilation parameters to reduce the risk of VILI

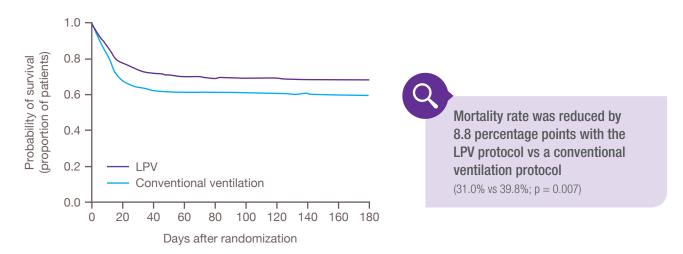
Conventional MV	 V_T of 10–15 mL/kg PBW has been traditionally used to normalize PaCO₂, PaO₂ and pH⁹ May exacerbate or perpetuate lung injury⁹
Concept of LPV	 Utilizes lower V_T (~6 mL/kg PBW) than conventional MV⁹ Other components may include lower P_{plat}, higher PEEP, and lower ΔP^{8,10,11} Elevated PaCO₂ is either accepted (permissive hypercapnia) or may require measures to reduce CO₂ levels¹²
Concept of ultra LPV	 Utilizes even lower V_T (≤ 3 mL/kg PBW) compared with LPV¹³ Other components may include lower P_{plat}, higher PEEP, and lower ΔP¹⁴ Greater elevations in PaCO₂ can occur compared with LPV and extracorporeal lung support is needed to reduce CO₂ levels¹³

i

Driving pressure

 ΔP is defined as V_T normalized to Crs (V_T/Crs) or P_{plat} minus PEEP

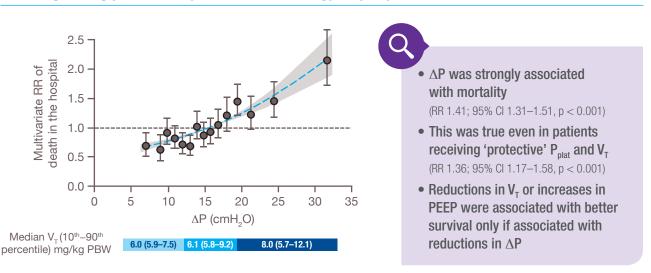
 $\Delta P = P_{plat} - PEEP$


LPV reduces duration of mechanical ventilation and mortality compared with conventional ventilation

The landmark, randomized, controlled ARDS Network (ARDSNet) study compared conventional ventilation with LPV in 861 patients with ARDS⁹

- **Conventional ventilation:** initial V_T 12 mL/kg PBW and $P_{olat} \le 50 \text{ cmH}_20$
- **LPV:** initial $V_T 6 \text{ mL/kg PBW}$ and $P_{olat} \le 30 \text{ cmH}_20$

The LPV strategy was associated with:9


- Greater probability of survival over 180 days (69.0% vs 60.2%; p = 0.007)
- Greater number of ventilator-free days during the first 28 days (12 vs 10 days; p = 0.007)
- Greater number of non-pulmonary organ/system failure-free days during the first 28 days (15 vs 12 days; p = 0.006)

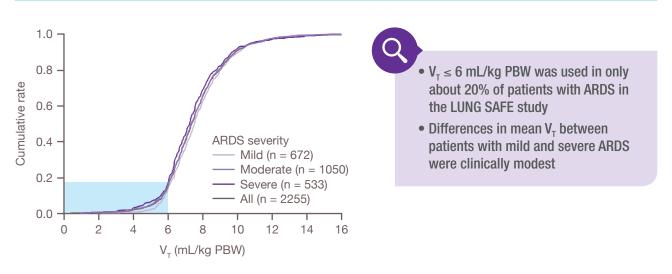
LPV with the ARDSNet protocol reduces mortality compared with conventional mechanical ventilation⁹

Randomized controlled trial (ARDSNet): Clinical outcomes of patients with ALI or ARDS managed with a LPV protocol (initial V_T 6 mL/kg PBW and P_{plat} maintained between 25–30 cmH₂O) were compared with those managed with a conventional ventilation protocol (initial V_T 12 mL/kg PBW and $P_{plat} \leq 50$ cmH₂O). Adapted with permission from ARDS Network. *N Engl J Med* 2000;342:1301–8. Copyright © (2000) Massachusetts Medical Society.

Reducing driving pressure as part of an LPV strategy may improve survival¹¹

Randomized controlled trials: The relationship between different ventilation parameters and mortality was explored in a mediation analysis of data from 9 randomized controlled trials in patients with ARDS (n = 3562). Data shown as the increase in RR of hospital mortality as a function of ΔP after multivariate adjustment (95% Cls represented as grey shaded area). Adapted with permission from Amato MB, et al. *N Engl J Med* 2015;372:747–55. Copyright © (2015) Massachusetts Medical Society.

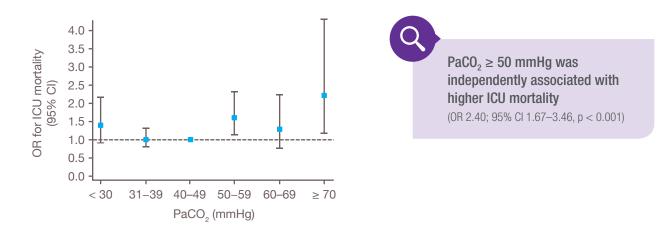
Key points


- LPV strategies modify ventilation parameters that have been shown to increase the risk of VILI⁹
- The ARDSNet LPV protocol, based on reduced V_T and P_{plat}, improves patient outcomes, including mortality^{9,11} and duration of mechanical ventilation⁹
- More recent evidence shows that lower ΔP is associated with a reduced mortality risk in patients with ARDS¹¹

How may low-flow ECCO₂R facilitate the use of LPV?

Despite guidelines supporting the use of LPV,^{15–18} V_T often exceeds 6 mL/kg PBW in clinical practice

- In a cross-sectional survey of 200 German ICUs (n = 152), only 2.6% of patients received low V_{τ} ventilation despite the fact that perceived adherence by ICU directors was 79.9%¹⁹
- In the LUNG SAFE study (n = 2255), more than one-third of patients were mechanically ventilated with $V_{\tau} > 8 \text{ mL/kg PBW}^4$



Adherence to LPV is poor in clinical practice⁴

Prospective cohort study: Ventilatory management of patients with ARDS (Berlin definition; n = 2255) was assessed as a secondary endpoint in the LUNG SAFE study. Adapted with permission from Bellani G, et al. *JAMA* 2016;315:788–800. Copyright © (2016) American Medical Association. All rights reserved.

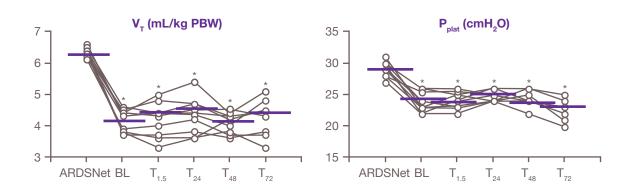
Major barriers to LPV adherence include concerns about hypercapnia and respiratory acidosis induced by V_{τ} reduction^{20–22}

- Hypercapnia is often regarded as an acceptable side effect, however, physiological effects may include pulmonary vasoconstriction, increased intracranial pressure, and decreased renal blood flow, among others¹²
- Recent evidence indicates that hypercapnia is associated with an increased risk of ICU mortality²³

Severe hypercapnia is associated with an increased risk of ICU mortality²³

Prospective observational studies: The relationship between hypercapnia and ICU mortality was assessed in a secondary analysis of 3 studies that included data from 1899 patients with moderate-to-severe ARDS. Results from a logistic regression model with adjustment for baseline variables are shown. Adapted with permission of Springer from Nin N, et al. *Intensive Care Med* 2017;43:200–8.

ECCO₂R enhances CO₂ removal in patients receiving LPV

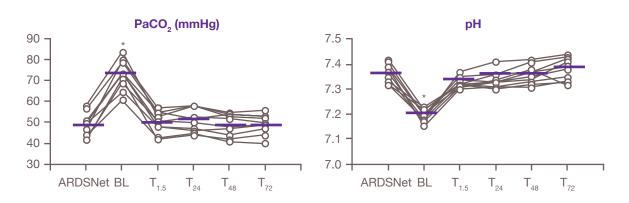

- Evidence shows that ECCO₂R systems significantly reduce PaCO₂ levels, and may, therefore, facilitate LPV by allowing for a reduction in V₁²⁴
- More specifically, low-flow ECCO₂R devices using flow rates as low as 0.5 L/min should theoretically be sufficient to eliminate all CO₂ produced by the body²⁴

i

1 L of blood with a $PaCO_2$ of 5 kPa contains around 500 mL of CO_2 , or on average, two times more CO_2 than the body produces per minute

Low-flow $ECCO_2R$ enables use of LPV by reducing $PaCO_2$ levels and normalizing arterial pH

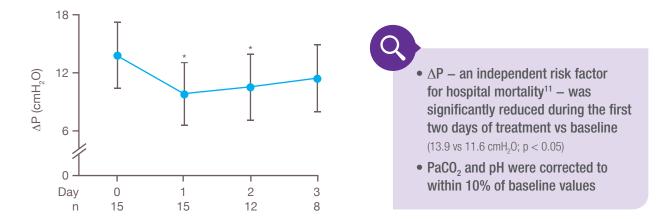
 The ability of low-flow ECCO₂R to facilitate use of LPV has been demonstrated in a prospective study of patients with ARDS, 10 of whom had P_{plat} within the range of 28–30 cmH₂O while being treated with the ARDSNet protocol²⁵



Low-flow ECCO₂R allows for maintenance of V_T and P_{plat} in line with LPV strategies²⁵

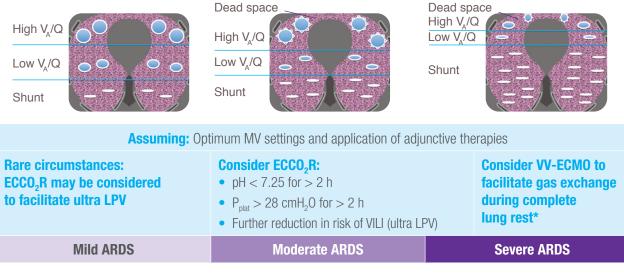
Prospective study: Data shown as individual and average (horizontal bars) values of V_T and P_{plat} during LPV with the ARDSNet protocol, after lowering V_T (BL), and at 1–1.5, 24, 48, and 72 hours after initiation of ECCO₂R (n = 10 ICU patients with ARDS [American-European Consensus Conference definition]). *p < 0.001 vs ARDSNet ventilation. BL, baseline. Adapted with permission from Terragni PP, et al. *Anesthesiology* 2009;111:826–35.

- Patients received low-flow ECC0₂R following a reduction in V_T to < 6 mL/kg PBW
- Low-flow ECCO₂R allowed for maintenance of $V_{\tau} < 6 \text{ mL/kg/PBW}$
- Low-flow ECCO₂R allowed for maintenance of P_{plat} between 25–28 cmH₂O


Low-flow ECCO₂R reduces PaCO₂, thereby normalizing arterial pH²⁵

Prospective study: Data shown as individual and average (horizontal bars) values of $PaCO_2$ and arterial pH during LPV with the ARDSNet protocol, after lowering V_T (BL), and at 1–1.5, 24, 48, and 72 hours after initiation of $ECCO_2R$ (n = 10 ICU patients with ARDS [American-European Consensus Conference definition]). *p < 0.001 vs ARDSNet ventilation. Adapted with permission from Terragni PP, et al. *Anesthesiology* 2009;111:826–35.

Compared with baseline, PaCO₂ was significantly reduced and arterial pH was significantly increased after 1–1.5 hours of initiating low-flow ECCO₂R (p < 0.001 for both)


• After 72 hours of low-flow ECCO₂R, the reduction in PaCO₂ was sufficient to normalize pH

Ultraprotective ventilation facilitated by low-flow ECCO₂R may reduce driving pressure¹⁴

Prospective study: The feasibility of very low V_T ventilation (4 mL/kg PBW) combined with low-flow ECCO₂R was evaluated in patients with moderate ARDS (Berlin definition; n = 15). Adapted from Fanelli V, et al. *Crit Care* 2016;20:36.

ECCO₂R may have a role in the management of patients with moderate to severe ARDS – an example algorithm²⁶

Adapted from Del Sorbo L, et al. *Lancet Respir Med* 2014;2:154–64, with permission from Elsevier. **Note:** This example algorithm is based on author opinion and is not a recognized guideline. Severity based on the Berlin definition.⁵ *PaO₂/FiO₂ < 50 with FiO₂ > 0.8 for > 3 h, or PaO₂/FiO₂ < 80 with FiO₂ > 0.8 for > 6 h.

Key points Despite evidence and guidelines in support of LPV, concerns about hypercapnia and respiratory acidosis resulting from LPV may limit its use²⁰⁻²² Recent evidence shows that severe hypercapnia is independently associated with increased ICU mortality²³ ECCO₂R – even at low blood flow rates – enables use of LPV and ultra LPV by reducing PaCO₂ and thereby normalizing pH²⁵

The role of low-flow ECCO₂R in supporting LPV strategies

How may mechanical ventilation adversely affect patient outcomes?

- Mechanical ventilation is the cornerstone of treatment for patients with impaired lung function¹
- However, VILI may complicate the management of mechanically ventilated patients,^{1,2} particularly those with ARDS
- Evidence from animal studies suggests that VILI can contribute to poor outcomes, including multiple organ failure^{3,9}

How may LPV reduce risk of VILI?

- LPV strategies modify ventilation parameters that have been shown to increase the risk of VILI⁹
- The ARDSNet LPV protocol, based on reduced V_T and P_{plat}, improves patient outcomes, including mortality^{9,11} and duration of mechanical ventilation⁹
- More recent evidence shows that lower ΔP is associated with a reduced mortality risk in patients with ARDS¹¹

How may low-flow ECCO₂R facilitate the use of LPV?

- Despite evidence and guidelines in support of LPV, concerns about hypercapnia and respiratory acidosis resulting from LPV may limit its use²⁰⁻²²
- Recent evidence shows that severe hypercapnia is independently associated with increased ICU mortality²³
- ECCO₂R even at low blood flow rates enables use of LPV and ultra LPV by reducing $PaCO_2$ and thereby normalizing pH^{25}

References

- 1. Silversides JA, Ferguson ND. Crit Care 2013;17:225.
- 2. Gattinoni L, Protti A. CMAJ 2008;178:1174-6.
- 3. Slutsky AS. Am J Respir Crit Care Med 2015;191:1106–15.
- 4. Bellani G, et al. JAMA 2016;315:788-800.
- 5. Ranieri VM, et al. JAMA 2012;307:2526-33.
- 6. Peek GJ, et al. Lancet 2009;374:1351-63.
- 7. Esteban A, et al. *Chest* 2000;117:1690–6.
- 8. Villar J, et al. *Crit Care Med* 2006;34:1311–8.
- 9. The Acute Respiratory Distress Syndrome Network. *N Engl J Med* 2000;342:1301–8.
- 10. Amato MB, et al. N Engl J Med 1998;338:347-54.
- 11. Amato MB, et al. N Engl J Med 2015;372:747-55.
- 12. Hess D, Kacmarek R. Essentials of mechanical ventilation. 3rd ed: McGraw-Hill Education; 2014.
- 13. Bein T, et al. Intensive Care Med 2013;39:847-56.
- 14. Fanelli V, et al. Crit Care 2016;20:36.
- 15. Dellinger RP, et al. Crit Care Med 2013;41:580-637.

- World Health Organization. Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus is Suspected, 2013. Available at: http://www.who.int/csr/disease/coronavirus_infections/ InterimGuidance_ClinicalManagement_NovelCoronavirus_11Feb13u. pdf?ua=1 (Accessed July 2017).
- Intensive Care Society. Guidelines for the Provision of Intensive Care Services, 2015. Available at: http://www.ics.ac.uk/ICS/guidelinesand-standards.aspx (Accessed July 2017).
- 18. Cho YJ, et al. Tuberc Respir Dis 2016;79:214-33.
- 19. Brunkhorst FM, et al. Crit Care Med 2008;36:2719–25.
- 20. Rubenfeld GD, et al. Crit Care Med 2004;32:1289-93.
- 21. Kalhan R, et al. Crit Care Med 2006;34:300-6.
- 22. Dennison CR, et al. Crit Care Med 2007;35:2747–54.
- 23. Nin N, et al. Intensive Care Med 2017;43:200-8.
- 24. Morimont P, et al. Crit Care 2015;19:117.
- 25. Terragni PP, et al. Anesthesiology 2009;111:826-35.
- 26. Del Sorbo L, et al. Lancet Respir Med 2014;2:154–64.

Baxter is a registered trademark of Baxter International Inc. GLBL/MG1/17-0001 August 2017

